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Abstract
The effects of tunnelling on the collective charge-density excitations in two
coupled parallel quantum wires and their inelastic light scattering spectra are
studied theoretically. The evolution of the collective excitation spectra is
presented as a function of the tunnelling strength by altering the symmetry
of the two quantum wires. We find that, for two symmetric quantum wires in a
resonant tunnelling regime, the plasmon modes are similar to the intrasubband
and intersubband plasmon modes. However, in the non-resonant tunnelling
condition, the mode mixing occurs. The inelastic light scattering spectrum due
to the mixed plasmon modes are discussed in detail.

1. Introduction

Collective excitations and exchange-correlation effects in multisubband quasi-one-
dimensional (Q1D) electron gases in both isolated quantum wires [1–11] and multiwire
superlattices [4, 12–16] have been extensively studied in the last decade. In particular, the
random phase approximation (RPA) has been proved to be a very good approach for describing
the plasmon dispersions in such systems [5–7]. In contrast to higher dimensional electron gas
systems, the single-particle excitations (SPE) are suppressed in one-dimensional (1D) electron
gas due to the energy–momentum conservation leading to a gap in the SPE continuum at low
energies [1–4]. In a doubly occupied subband quantum wire, the intrasubband plasmon mode
due to the second subband lies in the gap between the two intrasubband SPE continua and
is undamped. This feature is essentially different from its counterpart in a two-dimensional
system where only one intrasubband plasmon mode is undamped. It has also been shown
that the higher frequency intrasubband plasmon mode in the Q1D system (due to the lowest
subband) is of an energy proportional to q| ln qW |1/2 at the long wavelength limit, whereas
the lower frequency one has a linear q dependence. Here q is the 1D wavevector and W the
wire width. Furthermore, a large depolarization shift has been found for the intersubband
plasmon mode in single wires. On the other hand, Que et al [12] have predicted that, for a
multiwire superlattice, only one intrasubband plasmon mode is experimentally observable at
long wavelength. This feature is independent of either the number of occupied subbands or
the possibility of tunnelling between the wires.
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In a similar way to coupled two-dimensional electron gases [17], optical and acoustic
plasmon modes [12, 18–20] were found in two coupled quantum wires. They are respectively
due to the in-phase and out-of-phase charge-density oscillations in the two wires. These
modes were also studied in multiwire superlattices [3, 12]. Theoretical work has been done
on plasmon dispersions [19, 20], electron–electron correlations [21, 22], Coulomb drag [23],
and tunnelling effects in these systems [24, 25]. The RPA results were improved by including
correlation effects within the self-consistent scheme of STLS [22]. It has been shown that the
correlation strength in each wire increases when the electron density decreases. Moreover,
the correlations between electrons in different wires increase as the wires are brought closer
together. These correlations affect the collective modes in coupled electron gases and might
also be responsible for charge-density-wave instabilities. Correlation induced instabilities in
collective modes were predicted in coupled quantum wires with low charge density [26, 27].
Very recently it was shown that a weak resonant tunnelling in coupled wires leads to a finite
energy value for the acoustic mode at zero wavevector [19]. It was also found that the dynamic
depopulation effect in these wires results in bistability in electron transport [16]. In previous
work [28], we found that the acoustic plasmon mode in two asymmetric quantum wires in a very
weak non-resonance tunnelling condition presents two gaps at finite q. This acoustic mode
splitting indicates a resonant coupling between the acoustic plasmon and the single-particle
excitations. Tunnelling effects have provided new devices formed by coupled semiconductor
quantum wires [25] and have attracted considerable theoretical interest.

Much insight into the many-body effects in Q1D electron systems is gained from optical
experiments. In fact, both plasmon and magnetoplasmon modes in these systems were detected
by far-infrared (FIR) absorption spectroscopy [18, 29] and resonant inelastic light (Raman)
scattering [30, 31]. Recently, several theoretical studies have been published on the FIR
spectrum of Q1D electron gases in coupled quantum wires. Within the RPA, Shahbazyan
and Ulloa [24] have investigated the effects of weak interwire tunnelling on the FIR absorption
spectrum due to both single-particle and collective excitations in two symmetric parabolic
quantum wires under a perpendicular magnetic field. They showed that a weak tunnelling
introduces a depolarization shift in the intersubband plasmon frequency as well as additional
absorption peaks due to intersubband single-particle excitations. Such a spectrum was
found to be very sensitive to magnetic fields. For fields larger than a critical value, the
plasmon mode is strongly damped by the SPE. Furthermore, Steinebach et al [32] studied
the FIR absorption of two coupled quantum wires in the presence of magnetic fields with and
without tunnelling. Their FIR absorption spectrum was obtained within the time-dependent
Hartree–Fock approximation. The asymmetry between the two wires was considered. They
demonstrated that: (i) the acoustic plasmon mode in two asymmetric quantum wires is strongly
enhanced; (ii) tunnelling leads to the acoustic magnetoplasmon mode being of higher frequency
values than those of the optical ones; and (iii) the acoustic and optical plasmon mode mixing
represented by the anticrossing of these plasmon modes in magnetic fields.

Inelastic light scattering is a powerful method for the study of the collective and single-
particle excitations in doped semiconductors because the energy and wavevector dispersions
can be measured. In fact, the very first 1D signature of the plasmon modes was obtained by
resonant inelastic light scattering [30]. The present work is devoted to a theoretical study of the
inelastic light scattering spectra in coupled parallel quantum wires with tunnelling. Our results
show that a complete plasmon dispersion in this system can be obtained from the calculated
Raman spectrum. Our system continuously changes from two coupled quantum wires with
tunnelling to a single multisubband wire as the distance between them decreases. We are
also able to include an anisotropy in the system to study coupled asymmetric quantum wires.
We demonstrate the evolution of the collective excitation spectra in two coupled quantum
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wires as a function of the tunnelling strength. The plasmon dispersion and the corresponding
inelastic light scattering spectra are obtained through the multisubband dielectric function
within the RPA. We show that, in the resonant tunnelling condition, the acoustic mode in
the coupled quantum wires evolves to an intersubband mode and develops a finite energy at
q = 0. Moreover, we show that the tunnelling between the wires induces partial damping on
the plasmon modes due to different modes mixing.

This paper is organized as follows. The one-particle properties of our system will be briefly
discussed in section 2. Theoretical formulation to obtain both the collective charge-density
excitation and the inelastic light-scattering spectra will be given in section 3. We present our
numerical results and discussions in section 4. We summarize our work in section 5.

2. Two coupled quantum wires with tunnelling

We consider a two-dimensional (2D) system in the xy plane subjected to an additional
confinement in the y-direction which forms two quantum wires parallel to each other in the
x-direction in which the electrons are free. We assume the 2D system to be ideal, i.e. of zero
thickness in the third (z) direction. The confinement potential in the y-direction is taken to be
of square well type of height Vb and widths W1 and W2 representing the first and the second
wire, respectively. The potential barrier between the two wires is of width Wb. The average
distance between the parallel 1D electron gases is then given by d = Wb + (W1 +W2)/2. The
subband energiesEn and the wavefunctions φn(y) are obtained from the numerical solution of
the one-dimensional Schrödinger equation in the y-direction. We restrict ourselves to the case
where n = 1, 2 and define ω0 = E2 − E1 as being the gap between two lowest eigenstates.
The interpretation of the index n depends on the tunnelling strength between the wires. When
there is no tunnelling between them, n should be a wire index. On the contrary, when the wires
are in the resonant tunnelling condition, n is interpreted as a subband index. We should point
out here the particular case where the two wires are symmetric (W1 = W2). In the presence
of tunnelling in this case, the two lowest wavefunctions are symmetric and antisymmetric
functions of y, with ω0 = �SAS .

We apply the numerical calculation to two coupled quantum wires in a GaAs/Al0.3Ga0.7As
structure with Vb = 228 meV, the electron effective mass m∗ = 0.07me (me being the free
electron mass). By keeping the width of one wireW1 = 150 Å and changing the otherW2, we
show in figure 1(a) the probability P (n)1 = ∫

QW1
dy|φn(y)|2 of an electron, in the first (n = 1)

and second subband (n = 2), being found in the quantum wire of widthW1 for different barrier
widths W2. The corresponding energy gap between the two subbands is given in figure 1(b).
Notice that the two wires are in the resonant tunnelling condition when W1 = W2. In this
situation, P (1)1 = P (2)1 = 0.5 which means that electrons in any subband have a 50% chance
to be found in both wires. At the same time, the energy difference between the two subbands
ω0 = �SAS reaches a minimum.

The electron–electron Coulomb interaction Vnn′mm′(q) describes two-particle scattering
events [28]. In the coupled quantum wires with two occupied subbands (n, n′,m,m′ = 1, 2),
it represents the following different physical processes: (i) V1111(q) = VA, V2222(q) = VB ,
and V1122(q) = V2211(q) = VC , represent the scattering in which the electrons remain in their
original subbands (wires); (ii) V1212(q) = V2121(q) = V1221(q) = V2112(q) = VD , represent
the scattering in which both electrons change their subband (wire) indices; and (iii) V1112(q) =
V1121(q) = V1211(q) = V2111(q) = VJ and V2212(q) = V2221(q) = V1222(q) = V2122(q) =
VH , represent the scattering in which only one electron suffers intersubband (interwire)
transition. Notice that, when there is no tunnelling, VD = VH = VJ = 0. It is clear that
these terms are responsible for the tunnelling effects on the collective excitations.
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Figure 1. (a) The probability of an electron, in the n = 1 (bold full curves) and n = 2 (thin full
curves) subband, to be found in the quantum wire ofW1 = 150 Å as a function ofW2. Wb = 30 Å
(full curves), 50 Å (broken curves) and 70 Å (dotted–dashed curves); (b) the energy difference ω0
between the two subbands. Vb = 228 meV and m∗ = 0.07me .

3. Theoretical formulation

For a multisubband electron gas system, the collective excitation spectrum can be obtained
by the zeros of the determinant of the dielectric matrix [4] εnn′mm′(q, ω) = δnmδn′m′ −
 nn′(q, ω)Vnn′mm′(q). Within the RPA, the function  nn′(q, ω) is the 1D non-interacting
irreducible polarizability. In the presence of impurity scattering, we use the formula proposed
by Mermin [33] with a phenomenological damping constant γ describing the level broadening.

We restrict ourselves to a two subband model throughout this paper. Thus, using
the condition det |εnn′mm′(q, ω)| = 0, the collective charge-density excitation spectrum is
determined by the following equation:

[1 − VD( 12 + 21)][(1 − VA 11)(1 − VB 22)− V 2
C 11 22]

+( 12 + 21)[2VCVJVH 11 22 − V 2
J  11(1 − VB 22)

−V 2
H 22(1 − VA 11)] = 0. (1)

The inelastic light scattering intensity of an electron gas is proportional to its dynamical
structure factor, or equivalently to the imaginary part of the polarization function [34]. For the
present coupled Q1D electron gases, the inelastic light scattering spectrum can be written as

I (qy, q, ω) = −
∑
nn′mm′

Im [χnn′mm′(q, ω)Ann′mm′(qy)] (2)
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with

Ann′mm′(qy) =
∫

dy
∫

dy ′ φn(y)φn′(y) exp[−iqy(y − y ′)]φm(y ′)φm′(y ′)

where qy is related to the wavevector of the incident light and the density–density correlation
function χnn′mm′(q, ω) can be obtained by the equation∑

ll′
κll′,nn′(q, ω)χll′,mm′(q, ω) = δnmδn′m′ (3)

where

κnn′mm′ = δnmδn′m′/ nn′ − Vnn′mm′(q).

One is able to notice that Re [χnn′mm′(q, ω)] = Re [χmm′nn′(q, ω)] and Im [Ann′mm′(qy)] +
Im [Amm′nn′(qy)] = 0. Therefore

I (qy, q, ω) = −
∑
nn′mm′

Im [χnn′mm′(q, ω)]Re [Ann′mm′(qy)]. (4)

From the above equations, we see that Re [Ann′mm′(qy)] is independent of either q or ω, but it
could play an important role in the scattering intensity due to each plasmon mode.

4. Numerical results and discussions

As we discussed in section 2, the Coulomb interactions VD , VH and VJ vanish in the absence
of tunnelling between the wires. As a result, (1) reduces to

(1 − VA 11)(1 − VB 22)− V 2
C 11 22 = 0. (5)

For the sake of discussion, we denote the remaining Coulomb interactions in (5) asUA = VA =
VB and UC = VC , when the two wires are symmetric (W1 = W2) and there is no tunnelling
between them (Vb = ∞). In this way (5) can be rewritten as

[1 − U+( 11 + 22)][1 − U−( 11 + 22)] − U+U−( 11 − 22)
2 = 0 (6)

where U± = (UA±UC)/2. Notice that in the absence of tunnelling the two wires are isolated
from each other and they might have different electron densities (or Fermi energies). When
the two wires are of the same electron density, one has  11 =  22 =  0. The in-phase and
out-of-phase plasmon modes are decoupled and determined by the equation

1 − 2U± 0 = 0.

It is clear that the potential U+ and U− are related to the in-phase and out-of-phase plasmon
modes, respectively. However, when the two wires are of different electron densities,
 11 �=  22 which leads to the coupling between the two plasmon modes, as indicated in (6).

When the tunnelling is present, one should consider only the subband indices as good
quantum numbers. The Coulomb interactions VD , VH and VJ become finite in this situation
because of the overlap between the different wavefunctions. For two symmetric wires
(W1 = W2), however, the Coulomb potential VH = VJ = 0 due to the symmetry of the
electron wavefunctions. In this case, (1) reduces into two decoupled equations

[(1 − VA 11)(1 − VB 22)− V 2
C 11 22] = 0 (7)

and

[1 − VD( 12 + 21)] = 0. (8)

The solutions of (7) and (8) give rise to the dispersion of the intra- and inter-subband plasmon
modes, respectively. Furthermore, we noticed that, in the weak resonant tunnelling condition
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of two symmetric quantum wires, VA 	 VB 	 VC = U+ and VD 	 U−. In comparison
with (6), (7) and (8) can be written as 1 − U+( 11 + 22) = 0 and 1 − U−( 12 + 21) = 0,
respectively.

Figure 2 shows the plasmon dispersions in two coupled GaAs/Al0.3Ga0.7As quantum wires
with a barrier of widthWb = 30 Å. One quantum wire is of widthW1 = 150 Å and the other
is of different widths: W2 = (a) 150 Å; (b) 140 Å; (c) 125 Å; and (d) 110 Å. The total electron
density in the system is Ne = 106 cm−1. In figure 2(a), the two quantum wires are in the
resonant tunnelling condition. The energy gap between the two subbands is�SAS = 1.70 meV.
In this case, the electron densities in the first (n = 1) and the second (n = 2) subbands are
N1 = 0.57 × 106 cm−1 and N2 = 0.43 × 106 cm−1, respectively. The shadow areas indicate
the SPE which result in the Landau damping on the collective excitation modes. As discussed
before, VH = VJ = 0 in this case. It leads to the decoupling between the intra- and inter-
subband plasmon modes. Equation (7) gives rise to two intrasubband plasmon modes plotted
in thick full curves, which are the so-called in-phase or ‘optical’ plasmon modes. The high-
frequency intrasubband mode (1,1) is mainly due to the first subband while the low-frequency
one (2,2) is mainly due to the second subband. The small energy gap �SAS between the two
subbands leads to a very narrow gap between the two intrasubband SPE continua where the
mode (2,2) lies. Equation (8) yields two intersubband plasmon modes indicated in thick broken
curves. They correspond to the out-of-phase (or ‘acoustic’) modes which are of finite energy
at q = 0 due to the tunnelling effect. It is clear that the Coulomb potential VD in this case is
responsible for the intersubband modes, as indicated in (8). We also see a large depolarization
shift of the high-frequency intersubband plasmon mode (1,2). The intersubband single-particle
excitation continuum is of a finite frequency (ω = �SAS) at q = 0. The occupation of the
second subband opens up a gap in this continuum where the low-frequency intersubband mode
(1, 2)′ shows up.

For ω � �SAS ,  12 +  21 ≈  11 +  22 in (8). Therefore, it is not difficult to
understand that at high frequencies the intersubband plasmon mode (1,2) approaches the
acoustic mode in coupled wires without tunnelling. Notice that, due to the symmetry of
the confinement potential, intra- and intersubband modes do not couple to each other in such
a way that: (i) the intrasubband plasmon modes cross over the intersubband modes; and
(ii) the intersubband (intrasubband) single-particle excitations do not damp the intrasubband
(intersubband) plasmon modes. As we will discuss later, this feature becomes clearer in the
inelastic light scattering spectrum.

Figure 2(b) shows that a mixing between the intra- and inter-subband plasmon modes
occurs when the two quantum wires become asymmetric. Notice that, by decreasing the
second wire width W2 to 140 Å, the energy gap between the two subbands increases. So, the
intersubband modes shift to higher frequencies at small q, while the depolarization shift in the
mode (1,2) decreases. The latter results from the decrease of the electron density of the second
subband. The open circles indicate the peak position in the inelastic light scattering spectra
which will be discussed later. We need to mention that in this case one cannot obtain a complete
plasmon spectrum from the zeros of the determinant of the dielectric matrix because of the
effects of the mode mixing through tunnelling. We found that the high-frequency intrasubband
mode (1,1) is strongly mixed with the high-frequency intersubband mode (1,2). Moreover,
there is a coupling between the low-frequency intrasubband mode (2,2) and the intersubband
mode (1, 2)′. Notice that there is an anticrossing between these plasmon modes.

When we further reduce W2 to 125 Å, the intersubband plasmon mode (1,2) is totally
located above the intrasubband mode (1,1), as we show in figure 2(c). In this case, no root
of (1) was found for the low-frequency intrasubband mode. But we can observe this mode in
the light scattering spectra as indicated by the open circles. When W2 = 110 Å (figure 2(d)),
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Figure 2. Plasmon dispersions in two coupled GaAs/Al0.3Ga0.7As (Vb = 228 meV) quantum
wires separated by a barrier of widthWb = 30 Å withW1 = 150 Å andW2 = (a) 150 Å; (b) 140 Å;
(c) 125 Å; and (d) 110 Å. The total electron density is Ne = 106 cm−1. In (a) the full (broken)
curves indicate the intrasubband (intersubband) plasmon modes. The high- and low-frequency
intrasubband (intersubband) modes are called (1,1) and (2,2) ((1,2) and (1, 2)′), respectively. The
open circles in (b) and (c) indicate the peak position in the Raman spectra. The shadow area presents
the single-particle excitation continua.

the tunnelling becomes very weak due to the asymmetry in the two wires. This situation is
similar to that without tunnelling between the wires. Figure 2(d) shows that there are only
two small branches characterizing the intersubband plasmon modes at small q. But now we
observe two intrasubband modes. They are actually from two different quantum wires with
Coulomb coupling.

From the above discussion, we verified that the zeros of det |εnn′mm′(q, ω)| were not able
to provide the complete information about the plasmon modes in the two coupled quantum
wires. In order to access a complete spectrum of the collective excitation and the relative
importance of the different plasmon modes, one should calculate the inelastic light scattering
spectrum of the electron gas in the range of the plasmon frequency.

Figure 3(a) shows the inelastic light scattering (Raman) spectra due to the plasmon modes
given in figure 2(a). Here the phenomenological damping constant is taken as γ = 0.05 meV.
The broken and full curves correspond to qyd = 0 and π/2, respectively, where d is the
average distance between the two quantum wires. For qyd = 0 (broken curves), there is
no coupling between the incident light and the intersubband plasmon modes because the
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Figure 2. (Continued)

corresponding matrix element Re [Ann′mm′(qy)] vanishes. This means that the intersubband
plasmon modes do not scatter the incident light of long wavelength. One only can observe
the intrasubband plasmon mode scattering in the Raman spectrum at qy → 0, as we show
in figure 3(a). As discussed in the previous section, we also cannot identify the scattering
peaks due to the low-frequency intrasubband plasmon mode (2,2) because of its weakness.
For qyd = π/2, the spectra (the full curves) exhibit two main scattering peaks due to the
high-frequency intrasubband mode (1,1) and intersubband plasmon mode (1,2). At q = 0, the
scattering intensity due to the intrasubband mode is zero, but that due to the intersubband mode
is finite. The former (latter) increases rapidly (slowly) as the wavevector q increases. They
cross over at about q = 0.3 × 106 cm−1. We also find a small contribution coming from the
mode (1, 2)′. The existence of this collective mode is a particular feature of the Q1D system.
Our results show that, for two strongly coupled identical quantum wires with two occupied
subbands, the plasmon dispersions and their relative spectral weights are very similar to those
in the single quantum wire.

The plasmon mode mixing in two coupled asymmetric quantum wires leads to interesting
effects in the inelastic light scattering spectrum. The corresponding Raman spectra of
figure 2(b) is shown in figure 3(b). The open circles in figure 2(b) indicate the peak position
in the Raman spectra with a very small broadening constant γ = 10−3 meV. Even for
γ = 0.05 meV (as shown in figure 3(b)) we are still able to clearly observe four peaks in
the full curves for q = 0.05 and 0.1 × 106 cm−1. These peaks correspond to the four plasmon
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Figure 3. The inelastic light scattering spectra at different q in the coupled quantum wires
corresponding to figure 2 with γ = 0.05 meV and qyd = 0 (broken curves) and π/2 (full curves).
The different curves are offset for clarity. The intensity in (d) is reduced by a factor of two as
compared with the others.
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Figure 3. (Continued)
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modes in figure 2(b). We also see the anticrossing between the inter- and intra-subband modes
at large q. If we compare the broken curves in figures 3(b) and 3(a), we see the extra peak
in figure 3(b) due to the mode mixing. Notice that the weight of the lower frequency peak
transfers to the higher frequency one as q increases.

The electron density in the second subband decreases as W2 further decreases. As a
result, we can see in figure 3(c) that the intersubband modes lose their spectral weight at large
q. However, the mode mixing gets stronger in this case. We also find a scattering peak at the
low-frequency side which was absent in the zeros of the determinant of the dielectric matrix
(see figure 2(c)). This peak is located in the region of the SPE continuum but it is only partially
Landau damped. This kind of damping can be observed clearly when the modes get into the
SPE continuum (by comparing figures 2(c) and 3(c)). Notice that, when the intrasubband
plasmon mode (1,1) lies in the intersubband SPE continuum for q > 0.28 × 106 cm−1, there
is only a partial damping on it. Its corresponding scattering peak in figure 3(c) becomes
lower and broader. Figure 3(d) shows the inelastic-light scattering spectrum corresponding to
figure 2(d). In this case, the intersubband plasmon modes become irrelevant at large q. We
also observe a partial Landau damping on the two intrasubband plasmon modes when they
enter the intersubband SPE continua.

When we further increase the barrier width, for exampleWb = 70 Å and takeW1 = W2 =
150 Å, we find �SAS = 0.14 meV which indicates a very weak tunnelling between the two
quantum wires. Furthermore, if we keep the width of one wire, a very small change in the
other leads to the localization of the subband wavefunction in a certain wire as can be seen in
figure 1 (the full curves). In this asymmetric case, the acoustic mode splits when its frequency
is close to the frequencies of the intersubband-like single-particle excitations. As discussed in
our previous work [28], the interactions VJ and VH are responsible for such a splitting. They
represent the electron–electron scattering during which only one of the electrons experiences
intersubband transition. When the momentum and energy transfer between these two electrons
occurs in the region of the single-particle excitations, there will be a creation of an intersubband
electron–hole pair. The momentum and energy conservation in the scattering ensures that such
a transition removes the Landau damping. In this sense, the splitting of the acoustic plasmon
mode presented in [28] is essentially different from the plasmon mode mixing discussed here.

5. Conclusions

We have studied the collective charge-density excitations and the inelastic light scattering
spectra in coupled quantum wires with tunnelling. We showed that, in the resonant tunnelling
condition, intrasubband plasmon modes in the symmetric system do not couple to the
intersubband plasmon modes. The high-frequency intrasubband mode, carrying most oscillator
strength, corresponds to the so-called optical plasmon mode. The intersubband mode,
corresponding to the acoustic mode, is of finite frequency at q = 0. Moreover, the intersubband
plasmon modes do not couple to the long-wavelength incident light and, consequently, it cannot
be observed in the Raman scattering for qy → 0.

For two quantum wires in non-resonant tunnelling, the mode mixing occurs between the
different plasmon modes. Such a mixing can be observed by the anticrossing in the plasmon
dispersions. This might also be seen from the intensity of the inelastic light-scattering since it
leads to a transfer of the oscillator strength from one plasmon mode to the other. On the other
hand, the intrasubband-like plasmon mode can be partially Landau damped in the intersubband
single-particle excitation continuum. In this case, the often used theoretical approach based
on the zeros of the determinant of the dielectric matrix cannot provide a complete dispersion
relation of the plasmon modes.
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